Efficient water oxidation with organometallic iridium complexes as precatalysts.

نویسندگان

  • Anna Lewandowska-Andralojc
  • Dmitry E Polyansky
  • Chiu-Hui Wang
  • Wan-Hui Wang
  • Yuichiro Himeda
  • Etsuko Fujita
چکیده

Catalytic water oxidation has been investigated using five iridium complexes as precatalysts and NaIO4 as an oxidant at various pH conditions. An increase in the activity of all complexes was observed with increasing pH. A detailed analysis of spectroscopic data together with O2-evolution experiments using Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(OH2)(2+) as a precatalyst indicate that the high catalytic activity is closely connected with transient species (A) that exhibits an absorption band at λmax 590 nm. The formation of this active form is strongly dependent on reaction conditions, and the species was distinctly observed using a small excess of periodate. However, another species absorbing at 600 nm (B), which seems to be a less active catalyst, was also observed and was more prominent at high oxidant concentration. Dynamic light scattering analysis and transmission electron microscopy have identified species B as 120 nm nanoparticles. The ultrafiltration method has revealed that species A can be attributed to particles with size in the range of 0.5–2 nm, possibly small IrOx clusters similar to those described previously by Harriman and co-workers (J. Phys. Chem., 1991, 95, 616–621).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iridium-based complexes for water oxidation.

Organometallic Ir precatalysts have been found to yield homogeneous Ir-based water-oxidation catalysts (WOCs) with very high activity. The Cp*Ir catalyst series can operate under a variety of regimes: it can either act as a homogeneous or a heterogeneous catalyst; it can be driven by chemical, photochemical, or electrochemical methods; and the molecular catalyst can either act in solution or su...

متن کامل

Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors†

Artificial photosynthesis, modeled on natural light-driven oxidation of water in Photosystem II, holds promise as a sustainable source of reducing equivalents for producing fuels. Few robust wateroxidation catalysts capable of mediating this difficult four-electron, four-proton reaction have yet been described. We report a new method for generating an amorphous electrodeposited material, princi...

متن کامل

Effects of aqueous buffers on electrocatalytic water oxidation with an iridium oxide material electrodeposited in thin layers from an organometallic precursor.

A thin layer of an amorphous, mixed-valence iridium oxide (electrodeposited from an organometallic precursor, [Cp*Ir(H(2)O)(3)](2+)) is a heterogeneous catalyst among the most active and stable currently available for electrochemical water oxidation. We show that buffers can improve the oxygen-evolution activity of such thin-layer catalysts near neutral pH, but that buffer identity and concentr...

متن کامل

Characterization of an amorphous iridium water-oxidation catalyst electrodeposited from organometallic precursors.

Upon electrochemical oxidation of the precursor complexes [Cp*Ir(H(2)O)(3)]SO(4) (1) or [(Cp*Ir)(2)(OH)(3)]OH (2) (Cp* = pentamethylcyclopentadienyl), a blue layer of amorphous iridium oxide containing a carbon admixture (BL) is deposited onto the anode. The solid-state, amorphous iridium oxide material that is formed from the molecular precursors is significantly more active for water-oxidatio...

متن کامل

Water Oxidation at Hematite Photoelectrodes with an Iridium-Based Catalyst

The iridium complex [Cp*Ir(H2O)3](SO4) was used as an organometallic source for the electrodeposition of iridium oxide onto Fe2O3. The new iridium-containing electrode allowed us to study the coupling between the photocatalytic properties of hematite and the electrocatalytic properties of the iridium-based material. A cathodic shift of the photocurrent for water oxidation upon electrodeposition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 24  شماره 

صفحات  -

تاریخ انتشار 2014